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Abstract
We construct the hierarchy of nonlinear difference–difference equations
associated with the discrete Schrödinger spectral problem. As examples of
equations contained in this hierarchy we obtain the discrete-time Toda and
Volterra lattice equations. In the case of the time-discrete Toda lattice, we
construct its Lie point and generalized symmetries. Finally, we present its
Bäcklund transformations and relate it to the already constructed symmetries.

PACS numbers: 02.30.Ik, 02.30.Ks, 05.45.Yv

1. Introduction

Nonlinear integrable differential or differential–difference equations appear in the form of
hierarchies of equations [1–3], all characterized by a common spectral problem and by the
existence of a recursion operator. Equations belonging to the same hierarchy share many
properties connected to the presence of a common spectral problem: among them are the
presence of Bäcklund transformations and symmetries.

Many integrable nonlinear discrete–discrete equations have been considered in the
literature [4–10], but up to now no one has considered hierarchies of nonlinear discrete–
discrete equations. Here we shall apply a technique previously used for obtaining hierarchies
of differential or differential–difference equations. More specifically we construct the recursion
operator that will produce hierarchies of difference–difference equations.

We shall determine the symmetries of these discrete equations, making use of their
integrability. First we shall consider the Lie point symmetries [11–15], acting on the lattice
and on the equations, using an adapted evolutionary formalism. The peculiar structure of
the lattice will introduce severe restrictions, as will be seen in the examples. Next, we shall
consider generalized symmetries, in the evolutionary formalism, by exploiting the existence
of infinitely many differential–difference equations in involution in the spectral parameter
space. In particular we shall show the peculiar role of certain nonlinear differential–difference
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equations as generalized symmetries of the nonlinear difference–difference equations. For the
sake of concreteness we shall focus on just one equation of the hierarchy, the discrete-time
Toda lattice. The results presented can be easily extended to all the equations. In this case,
even though our equations are completely discrete and Bäcklund transformations are given by
difference equations, infinitesimal symmetries are given by differential–difference equations,
as in the case of differential–difference equations.

In section 2, starting from the discrete Schrödinger spectral problem we construct the
associated hierarchy of nonlinear difference–difference equations. As examples, we consider
the discrete-time Toda lattice and the Volterra equations. For completeness we present
both their continuum time limit and the discrete evolution of the reflection and transmission
coefficients.

Section 3 is devoted to the calculation of the Lie point symmetries of the discrete-time
Toda lattice using a recently developed procedure [16]. In section 4 we construct the isospectral
and non-isospectral symmetries starting from the integrability properties of the equation.

In section 5 we construct the Bäcklund transformations for the hierarchy and show their
relation to the group transformations obtained by integrating the infinitesimal symmetries
constructed in section 4. Section 6 is devoted to some concluding remarks.

2. Construction of the discrete-time Toda lattice hierarchy

We start from the discrete Schrödinger spectral problem

ψn−1,m + an,mψn+1,m + bn,mψn,m ≡ Ln,mψn,m = λψn,m (1)

where an,m and bn,m, for any m, reduce to unity and zero respectively , as n goes to infinity.
In equation (1) λ is an m-independent spectral parameter. An integrable nonlinear difference–
difference equation can be written in operator form as

Ln,m+1 − Ln,m = Ln,m+1Mn,m − Mn,mLn,m (2)

in terms of the operator Mn,m which governs the discrete ‘time’ evolution of the wavefunction
ψn,m of equation (1)

ψn,m+1 = ψn,m − Mn,mψn,m. (3)

Let us notice that for the operator Ln,m given by equation (1) we can write

Ln,m+1 − Ln,m = (an,m+1 − an,m)E+
n + bn,m+1 − bn,m (4)

where E+
n is the shift operator in the n-variable such that E+

nfn,m = fn+1,m for any function
fn,m.

We use the by now standard Lax technique [3], in a similar way to the construction of the
Toda lattice hierarchy. We construct a hierarchy of nonlinear discrete–discrete equations by
requiring that an operator Mn,m and two scalar functions Un,m and Vn,m satisfy

Ln,m+1Mn,m − Mn,mLn,m = Un,mE+
n + Vn,m. (5)

We then construct new functions Ũn,m and Ṽn,m and a new operator M̃n,m, using the following
formulae:

Ln,m+1M̃n,m − M̃n,mLn,m = Ũn,mE+
n + Ṽn,m (6)

M̃n,m = Ln,m+1Mn,m + Fn,mE+
n + Gn,m (7)

where Fn,m and Gn,m are two scalar functions. Imposing the compatibility condition of
equations (1), (5)–(7) we obtain the following hierarchy of equations:(

an,m+1 − an,m

bn,m+1 − bn,m

)
= f 1

m(Ln,m)

(
(bn,m+1 − bn+1,m)

πn,m+1

πn+1,m
πn−1,m+1

πn,m
− πn,m+1

πn+1,m

)
+ f 2

m(Ln,m)

(
an,m+1 − an,m

bn,m+1 − bn,m

)
.

(8)
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Here f 1
m and f 2

m are entire functions of their argument and L is the recursion operator of the
hierarchy, obtained from equations (1) and (5)–(7) and given by

Ln,m

(
pn,m

qn,m

)
=

(
an,m+1Sn+2,m − an,mSn,m

pn−1,m + �n−1,m
πn−1,m+1

πn,m
− �n,m

πn,m+1

πn+1,m

)

+

(
bn,m+1pn,m + (bn,m+1 − bn+1,m)�n,m

πn,m+1

πn+1,m

+bn,m+1qn,m + (bn,m+1 − bn,m)Sn,m

)
. (9)

The starting points(
(bn,m+1 − bn+1,m)

πn,m+1

πn+1,m
πn−1,m+1

πn,m
− πn,m+1

πn+1,m

)
and

(
an,m+1 − an,m

bn,m+1 − bn,m

)

are obtained as coefficients of the integration constants for the functions Fn,m and Gn,m. The
function πn,m is given by

πn,m =
∞∏

j=n

aj,m (10)

while Sn,m and �n,m are defined as the bounded solutions of the equations

Sn+1,m − Sn,m = qn,m

�n+1,m − �n,m = −pn+1,m

πn+2,m

πn+1,m+1
.

(11)

The boundedness of the solutions of equations (11) was not required in the literature [2, 3]
but it is necessary to obtain a hierarchy of nonlinear difference–difference equations with well
defined evolution of the spectra.

Let us define the reflection and transmission coefficients Rm(z) and Tm(z) in terms of the
asymptotic behaviour of the function ψn,m

lim
n→∞ ψn,m(z) = φm(z−n + Rmzm)

lim
n→−∞ ψn,m(z) = φmTmz−n (12)

where φm is an appropriate normalization function depending just on m. In the case of a
generic equation of the discrete Toda lattice hierarchy (8) the discrete evolution of the reflection
coefficient turns out to be

Rm+1 = 1 − f 2
m(λ) − zf 1

m(λ)

1 − f 2
m(λ) − f 1

m(λ)

z

Rm. (13)

The transmission coefficient Tm does not evolve in m.
Let us notice that, as opposed to the usual case of hierarchies of partial differential or

differential–difference equations, the recursion operator (9) depends on both the functions
(an,m, bn,m) and (an,m+1, bn,m+1). Thus, in order to write the nonlinear difference–difference
as an evolution equation in which we explicate the fields at the time m + 1 in terms of those
at the time m, we must write down explicitly the complete system of equations and then solve
for the fields at the time m + 1. It is not guaranteed that this can always be carried out since
the equation can represent an implicit evolution in the discrete time.

Let us write down the simplest members of the hierarchy (8).

2.1. The discrete Toda lattice

Choosing f 2
m = 0 and f 1

m = α in equation (8) we obtain

an,m+1 − an,m = α(bn,m+1 − bn+1,m)
πn,m+1

πn+1,m

(14)

bn,m+1 − bn,m = α

(
πn−1,m+1

πn,m

− πn,m+1

πn+1,m

)
. (15)
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Solving equations (14) and (15) for bn+1,m − bn,m and taking into account the boundary
conditions for the fields an,m and bn,m, we obtain

bn,m = α +
1

α
− α

πn−1,m+1

πn,m

− πn,m

απn,m+1
. (16)

Substituting equation (16) into (14) we obtain a single equation of higher order for the
field πn,m:

�Toda = πn−1,m+2 − 1

α2
πn,m − π2

n,m+1

(
1

πn+1,m

− 1

α2πn,m+2

)
= 0 (17)

which, for πn,m = eun,m , reads

eun,m−un,m+1 − eun,m+1−un,m+2 = α2(eun−1,m+2−un,m+1 − eun,m+1−un+1,m ) (18)

i.e. the well known discrete-time Toda lattice equation [6]. On the left-hand side of
equation (18) we can easily obtain the second difference of the function un,m with respect
to the discrete-time m. Thus, defining

t = mσ vn(t) = un,m α = σ 2 (19)

we find that equation (18) reduces to the continuous-time Toda lattice equation

v̈n = evn−1−vn − evn−vn+1 + O(σ ). (20)

Equation (18) has the following Lax pair:

ψn−1,m +

(
α +

1

α
− αeun−1,m+1−un,m − eun,m−un,n+1

α

)
ψn,m + eun,m−un+1,mψn+1,m = λψn,m (21)

ψn,m+1 = ψn,m − αeun,m+1−un+1,mψn+1,m. (22)

From equation (13) we obtain the evolution of the reflection coeffcient Rm and Tm:

Rm+1 = 1 − αz

1 − α
z

Rm. (23)

2.2. The discrete non-isospectral Toda lattice

A new discrete-time Toda-like equation can be obtained by imposing non-isospectral
deformations on the spectral problem (1). This is the case when we allow λ to depend on
m, i.e. λ = λm. In such a case an,m and bn,m are no longer bounded asymptotically in n and we
have not been able to construct a hierarchy of equations. However, we can obtain a nonlinear
equation by assuming that λm evolves in m according to the equation

λm+1 = α0 + α1λm (24)

whose solution is given by

λm = λ0αm
1 + α0

αm
1 − 1

α1 − 1
. (25)

This is the only non-isospectral deformation compatible. We obtain the following difference–
difference equation:

α0

α1
+

K0
m

K1
m

1

α2n
1

πn,m

πn,m+1
− K1

m+1

K0
m+1

α2n−3
1

πn−1,m+2

πn,m+1
= K0

m+1

K1
m+1

1

α2n+1
1

πn,m+1

πn,m+2
− K1

m

K0
m

α2n
1

πn,m+1

πn+1,m

(26)

where K1
m and K0

m are arbitrary discrete-time dependent coefficients. They enter the discrete-
time evolution of the linear spectral operator (1):

ψn,m+1 = K0
m

αn
1

ψn,m + αn
1 K1

m

πn,m+1

πn+1,m

ψn+1,m. (27)
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As in the case of the simpler non-isospectral deformations of the Toda lattice [19], equation (26)
is transformed into equation (17) for ãn,m and b̃n,m by the following transformation of variables:

an,m = α2m
1 ãn,m bn,m = αm

1

[
b̃n,m + α0

αm
1 − 1

α1 − 1

]
ψn,m = α−nm

1 ψ̃n,m (28)

and by an appropriate choice of the coefficients K1
m and K0

m.

2.3. The discrete Volterra lattice

Choosing f 2
m = 0 and f 1

m(λ) = αλ in equation (8) we obtain

an,m+1 − an,m = α

(
πn−1,m+1

πn+1,m

− πn,m+1

πn+2,m

)
+ α(an,m+1 − an,m)

+α
πn,m+1

πn+1,m

(bn,m+1 − bn+1,m)

(
bn+1,m +

∞∑
j=n+1

(bj,m+1 − bj+1,m)

)
(29)

bn,m+1 − bn,m = α

(
πn−1,m+1

πn,m

bn−1,m+1 − πn,m+1

πn+1,m

bn+1,m

)

+α(bn,m+1 − bn,m) + α

(
πn−1,m+1

πn,m

− πn,m+1

πn+1,m

) ∞∑
j=n

(bj,m+1 − bj+1,m). (30)

The nonlocal system (29), (30) admits a very natural reduction, bn,m = 0 for any n and m.
In this case equation (30) is identically satisfied and equation (29) reduces to

an,m+1 − an,m = α

1 − α

πn,m+1

πn+1,m

(an−1,m+1 − an+1,m) (31)

the discrete–discrete Volterra equation. Equation (31) can also be written as

πn,m+1

πn+1,m+1
− πn,m

πn+1,m

+
α

1 − α

(
πn,m+1

πn+2,m

− πn−1,m+1

πn+1,m

)
= 0. (32)

Setting an,m = σvn(t) and t = mσ it is easy to show that equation (31) reduces to the
Volterra equation

v̇n = α

1 − α
vn(vn−1 − vn+1) + O(σ ). (33)

The discrete–discrete Volterra equation (31) corresponds to the following discrete-time
evolution of the wavefunction ψn,m:

ψn,m+1 = (α − 1)ψn,m + α
πn,m+1

πn+2,m

ψn+2,m. (34)

2.4. The discrete Volterra hierarchy

We can carry out the same reduction which gave us the Volterra equation (31) for the whole
discrete-time Toda lattice hierarchy (8). In such a way we obtain

an,m+1 − an,m = g1
m(L̃)

[
πn−1,m+1

πn+1,m

− πn,m+1

πn+2,m

]
+ g2

m(L̃)[an,m+1 − an,m] (35)

where g1
m and g2

m are two entire functions of their argument and

L̃pn,m = an,m+1σn+2,m − an,mσn,m + �n−1,m

πn−1,m+1

πn+1,m

− �n+1,m

πn,m+1

πn+2,m

(36)
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with

σn+1,m − σn,m = pn−1,m �n+1,m − �n,m = −pn+1,m

πn+2,m

πn+1,m+1
. (37)

From equation (35), by choosing g1
m = L̃ and g2

m = 0, we obtain the higher discrete
Volterra equation:

an,m+1 − an,m = an,m+1an+1,m+1 − an,man−1,m+1

+
πn−1,m+1

πn+1,m

[an,m + an−1,m + an−2,m+1] + Kn,m

[
an,m +

πn−1,m+1

πn+1,m

]

−πn,m+1

πn+2,m

[an+2,m + an+1,m + an,m+1] − Kn+2,m

[
an,m+1 +

πn,m+1

πn+2,m

]
(38)

where Kn,m satisfies the following first-order linear equation:

Kn+1,m − Kn,m = an−1,m − an−1,m+1. (39)

3. Construction of the Lie point symmetries for the discrete-time Toda lattice

In order to make a complete analysis of the discrete-time Toda lattice (18), let us study its
Lie point symmetries, using the algorithm introduced by Levi et al [16]. This means that we
interpret n and m as two indices characterizing two continuous variables, say x and t , defined
on a two-dimensional lattice of points. In the following by xn,m and tn,m we mean the value
of the coordinate x and t at the point labelled by the indices n and m. The discrete-time Toda
lattice equation (�Toda = 0) is a relation between five points in the two-dimensional plane:

P0 = (xn,m, tn,m) P1 = (xn+1,m, tn+1,m) P2 = (xn,m+1, tn,m+1)

P3 = (xn−1,m+2, tn−1,m+2) P4 = (xn,m+2, tn,m+2).
(40)

On an orthogonal uniform homogeneous lattice the discrete-time Toda lattice can be seen
as a relation defining for example πP3 , the field π at the time m + 2 at the point n − 1, in terms
of points at earlier times for higher values of x

πP3 = πP0 + π2
P2

(
1

πP1

− 1

πP4

)
. (41)

Consequently, given the function π on two lines parallel to the t axis, for example those
including P1 and P0, we can construct the function π for any time at all points at higher values
of x (see figure 1).

If the lattice is uniform and homogeneous in both the x and t variables, we can represent
the lattice by the following set of equations:

xn,m − xn+1,m = xn−1,m+2 − xn,m+2 (42)

tn,m+1 − tn,m = tn,m+2 − tn,m+1 (43)

tn,m = tn+1,m (44)

xn,m = xn,m+1 (45)

and their consequences obtained by shifting in n and m. Equations (42)–(45) from now on
will be denoted as �lattice = 0. Equations (42)–(45) allow us to cover all points of the plane
once two initial points are given.

A Lie point symmetry is defined by giving its infinitesimal generators, i.e. the vector field

X̂P = ξ(P, πP )∂x + τ (P, πP )∂t + φ(P, πP )∂πP
(46)
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P3

P2

P1

P0

P4

2

–2 2

1

0

t

x

3

Figure 1. The set of points which are connected by
the discrete-time Toda lattice equation on an orthogonal
uniform homogeneous lattice.

and generates an infinitesimal transformation in the site P of its coordinates and of the
function πP . The action of (46) on the discrete-time Toda lattice equation (17) is obtained by
prolonging (46) to all points of the lattice. The prolongation is obtained [16] by shifting (46)
to these points

prX̂ = X̂P0 + X̂P1 + X̂P2 + X̂P3 + X̂P4 . (47)

The invariance condition then reads
prX̂�Toda|(�Toda=0,�lattice=0) = 0

prX̂�lattice|(�Toda=0,�lattice=0) = 0.
(48)

The action of (47) on the lattice equation (42) gives

ξ(P0, πP0 ) − ξ(P1, πP1) = ξ(P3, πP3) − ξ(P4, πP4 ). (49)

Differentiating (49) with respect to πP2 and taking into account the discrete-time Toda lattice
equation (41) we obtain ξ = ξ(P ) only. Introducing this result into equation (49) and taking
into account equations (42)–(45) we obtain

ξ(xn,m, tn,m) − ξ(xn+1,m, tn,m) = ξ(2xn,m − xn+1,m, 2tn,m+1 − tn,m) − ξ(xn,m, 2tn,m+1 − tn,m).

(50)

Differentiating equation (50) twice, first with respect to xn,m and then to xn+1,m, we obtain
ξ = a(t)x + b(t). Then, from equation (50) we conclude that a(t) must be a constant. From
equation (45), as tn,m and tn,m+1 can be taken to be independent variables, we obtain that also
b(t) must be a constant and thus

ξP = a xn,m + b. (51)

By similar considerations for equations (43) and (44) we obtain that

τP = c tn,m + d (52)

where c and d are arbitrary constants.
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Applying the prolonged vector field prX̂ on the discrete-time Toda lattice equation we
obtain

φ(P, πP ) = A πP (53)

where A is an arbitrary constant.
To sum up, the symmetry algebra of the Lie point symmetries of the discrete-time Toda

lattice (17) is generated by five elements, given by space and time translations and three
independent dilations in the dependent and independent variables.

4. Isospectral and non-isospectral generalized symmetries for the discrete-time Toda
lattice

Infinitesimal symmetries for the discrete-time Toda lattice can be obtained as commuting
flows, i.e. an infinitesimal symmetry is obtained when its flow in the group parameter and
the discrete time evolution commute. These are represented by the hierarchy of nonlinear
differential–difference equations associated with the Schrödinger spectral problem (1). We can
also consider the nonlinear discrete-time difference equations commuting with the discrete-
time Toda lattice, but these turn out not to form a group of symmetry transformations associated
with (18). As we shall see later, they provide us with its Bäcklund transformations.

To discuss these issues, it is easier to work in the space of the spectral parameter where
the nonlinear evolution of the fields is substituted by the linear evolution of the reflection
coefficient. The two spaces are in one to one correspondence for fields which are asymptotically
bounded. In such a situation the discrete-time Toda lattice equation is represented in the
spectral space by the following evolution of the reflection coefficient Rm(z, ε) (the transmission
coefficient Tm(z, ε) is invariant under the m evolution):

Rm+1(z, ε) = 1 − zα

1 − α
z

Rm(z, ε) (54)

where ε is the infinitesimal group parameter (see equation (23)).
Any isospectral deformation ( dz

dεk
= 0) of the discrete Schrödinger spectral problem (1) is

given by (
an,m

bn,m

)
,εk

= (L̃)k

(
an,m(bn,m − bn+1,m)

an−1,m − an,m

)
. (55)

The recursion operator L̃ is

L̃
(

pn,m

qn,m

)
=

(
pn,mbn+1,m + an,m(qn,m + qn+1,m) + (bn,m − bn+1,m)sn,m

bn,mqn,m + pn,m + sn−1,m − sn,m

)
(56)

with sn,m given by an asymptotically bounded solution of the inhomogeneous first-order
equation

sn+1,m = an+1,m

an,m

(sn,m − pn,m). (57)

The index k of εk denotes the fact that this group parameter is associated with the kth equation of
the Toda lattice hierarchy (55). In correspondence with equation (55) we have an evolution (in
εk) of the reflection coefficient associated with the discrete Schrödinger spectral problem (1),
i.e.

dRm (z, εk)

dεk

= µλkRm(z, εk) (58)
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with

λ = z +
1

z
µ = 1

z
− z. (59)

It is easy to prove that the flows (14) and (55) commute by checking that the corresponding
flows of the reflection coefficients, given by equations (54) and (58), commute.

A less obvious calculation has to be performed to obtain the non-isospectral symmetries
of the discrete-time Toda lattice equation. In this case we have(

an,m

bn,m

)
,εk

= f k
m(L̃)

(
an,m(bn,m − bn+1,m)

an−1,m − an,m

)

+L̃k

(
an,m[(2n + 3)bn+1,m − (2n − 1)bn,m]

b2
n,m − 4 + 2[(n + 1)an,m − (n − 1)an−1,m]

)
. (60)

The function f k
m(λ) depends on the equation under consideration and, for the discrete-time

Toda lattice, is obtained as a solution of the difference equation:

f k
m+1(λ) − f k

m(λ) = −2λk 2α2 − αλ

1 + α2 − αλ
. (61)

Up to an arbitrary inessential constant the function f k
m(λ) is given by

f k
m(λ) = −2mλk 2α2 − αλ

1 + α2 − αλ
. (62)

The proof that the flow (60) with f k
m given by (62) commutes with that of equation (14) is

easily obtained in the space of the spectrum, where the reflection coefficient associated with
equation (60) satisfies the equation

dRm(z, εk)

dεk

= µf k
m(λ)Rm(z, εk) λεk

= µ2λk. (63)

On the lhs we have the total derivative of Rm(z, εk) with respect to εk .
Both the isospectral (for k 	= 0) and non-isospectral symmetries involve the dependent

variable at different points of the lattice and, even if the continuous limit will correspond to
Lie point symmetries [17], they are effectively generalized symmetries. As such they are not
integrable, i.e. we are not able to use them to obtain group transformations. They can be used
to provide solutions via symmetry reduction. As an example of these symmetries we write
down the simplest non-isospectral symmetry obtained for k = 0 and α = 1 and given by(

an,m

bn,m

)
,ε0

= −2m

(
an,m(bn,m − bn+1,m)

an−1,m − an,m

)
+

(
an,m[(2n + 3)bn+1,m − (2n − 1)bn,m]

b2
n,m − 4 + 2[(n + 1)an,m − (n − 1)an−1,m]

)
.

(64)

Taking into account equation (10), we can rewrite equation (64) as

(πn,m),ε0 = πn,m

{
− (2m + 2n + 1)bn,m + 2

∞∑
j=n

bj,m

}

(bn,m),ε0 = b2
n,m − 4 + 2[(n + m + 1)an,m − (n + m − 1)an−1,m].

(65)

In view of equation (16), bn,m can be rewritten in terms of πn,m and its shifted values.
A symmetry reduction with respect to the symmetry given by equation (65) is obtained by

solving the discrete-time Toda lattice (17) together with the equation we obtain by equating to
zero the rhs of equation (65), i.e.

(2m + 2n − 1)bn,m − (2m + 2n + 3)bn+1,m = 0
an,m[2(n + 1) + 2m] − an−1,m[2(n − 1) + 2m] = 4 − b2

n,m.
(66)
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The general solution is given by

bn,m = b0
m

(2m + 2n − 1)(2m + 2n + 1)

an,m = 1

(2n + 2m + 2)(2n + 2m)

[
a0

m + 4n(2m + 1 + n) +
(b0

m)2

4(2m + 2n + 1)2

]
.

(67)

Using equations (14) and (15) with α = 1, we obtain two equations for b0
m and a0

m, the reduced
equations. The study of all the possible reductions of the discrete-time Toda lattice with respect
to the Lie point and generalized symmetries is out of the scope of this presentation.

5. Bäcklund transformations and symmetries

Bäcklund transformations are obtained by the same kind of formula as used to obtain the
difference–difference equations when the new functions (ãn,m, b̃n,m) are defined as

ãn,m = an,m+1 b̃n,m = bn,m+1. (68)

With this identification the class of Bäcklund transformations associated with the discrete-time
Toda lattice hierarchy reads

δ(3)




(b̃n,m − bn+1,m)
π̃n,m

πn+1,m

π̃n−1,m

πn,m

− π̃n,m

πn+1,m


 = γ (3)

(
ãn,m − an,m

b̃n,m − bn,m

)
(69)

where 3 is the Bäcklund recursion operator, obtained in the same way as L, and given by

3

(
pn,m

qn,m

)
=

(
ãn,m(qn,m + qn+1,m) + (an,m − ãn,m)P̃n,m

pn,m + �̃n−1,m − �̃n,m + b̃n,mqn,m

)

+

(
bn+1,mpn,m + (b̃n,m − bn+1,m)�̃n,m

(bn,m − b̃n,m)P̃n,m

)
. (70)

Above, �̃n,m and P̃n,m are now defined as the bounded solutions to the following difference
equations:

P̃n,m − P̃n+1,m = qn,m

�̃n,m

πn+1,m

π̃n,m

− �̃n+1,m

πn+2,m

π̃n+1,m

= pn,m

πn+1,m

π̃n,m

.
(71)

γ and δ are entire functions of their arguments. Equation (70) corresponds asymptotically to

R̃m = γ (λ) − zδ(λ)

γ (λ) − δ(λ)

z

Rm. (72)

The simplest Bäcklund transformation is obtained by choosing γ = 1 and δ constant and
reads

ãn,m − an,m = δ(b̃n,m − bn+1,m)
π̃n,m

πn+1,m

b̃n,m − bn,m = δ

[
π̃n−1,m

πn,m

− π̃n,m

πn+1,m

]
.

(73)

It is worthwhile to recall that while the composition of two Bäcklund transformations is
still a Bäcklund transformation, however of higher order, the Bäcklund transformations do not
form a Lie group as the product of two Bäcklund transformations does not give a Bäcklund
transformation of the same form as the original ones. Moreover, the theorems presented in [18]
for the Toda lattice equation are also valid in this case, i.e. any Bäcklund transformation can
be written as a superposition of an infinite number of symmetries and vice versa.
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6. Conclusions

We have shown that we are able to construct hierarchies of integrable difference–difference
equations. In particular we have constructed the discrete hierarchy associated with the discrete
Schrödinger spectral problem. Using the recursion operator we have constructed the discrete-
time Toda lattice, the discrete-time Volterra equation and a higher member of its hierarchy.
Moreover we considered the inhomogeneous Toda lattice.

For these equations one can construct both symmetries and Bäcklund transformations.
Here, for the sake of simplicity, we limit ourselves to the case of the discrete-time Toda
lattice only. The infinitesimal Lie symmetries of the discrete-time Toda lattice equation are
given by differential–difference equations commuting with it. The isospectral symmetries are
represented by the nonlinear differential–difference equations of the Toda lattice hierarchy. In
the non-isospectral case, the symmetries are a non-isospectral extension giving Toda lattice
equations with non-constant coefficients.

As the equations are already discrete in all variables, the Bäcklund transformations do
not provide any new information and are given by the equations themselves. They are flows
commuting with the equations but do not have the properties of a Lie group.
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